首页> 外文OA文献 >Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily
【2h】

Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily

机译:酵母8-氧鸟嘌呤DNA糖基化酶的克隆揭示了碱基切除DNA修复蛋白超家族的存在

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Reactive oxygen species, ionizing radiation, and other free radical generators initiate the conversion of guanine (G) residues in DNA to 8-oxoguanine ((O)G), which is highly mutagenic as it preferentially mispairs with adenine (A) during replication. Bacteria counter this threat with a multicomponent system that excises the lesion, corrects (O)G:A mispairs and cleanses the nucleotide precursor pool of d(O)GTP. Although biochemical evidence has suggested the existence of base-excision DNA repair proteins specific for (O)G in eukaryotes, little is known about these proteins. Results: Using substrate-mimetic affinity chromatography followed by a mechanism-based covalent trapping procedure, we have isolated a base-excision DNA repair protein from Saccharomyces cerevisiae that processes (O)G opposite cytosine ((O)G:C) but acts only weakly on (O)G:A. A search of the yeast genome database using peptide sequences from the protein identified a gene, OGG1, encoding a predicted 43 kDa (376 amino acid) protein, identical to one identified independently by complementation cloning. Ogg1 has (O)G:C-specific base-excision DNA repair activity and also intrinsic beta-lyase activity, which proceeds through a Schiff base intermediate. Targeted disruption of the OGG1 gene in yeast revealed a second (O)G glycosylase/lyase protein, tentatively named OGG2, which differs from OGG1 in that it preferentially acts on (O)G:G. Conclusions: S. cerevisiae has two (O)G-specific glycosylase/lyases, which differ significantly in their preference for the base opposite the lesion. We suggest that one of these, Ogg1, is closely related in overall three-dimensional structure to Escherichia coli endonuclease III (endo III), a glycosylase/lyase that acts on fragmented and oxidatively damaged pyrimidines. We have recently shown that AlkA, a monofunctional DNA glycosylase that acts on alkylated bases, is structurally homologous to endo III. We have now identified a shared active site motif amongst these three proteins. Using this motif as a protein database searching tool, we find that it is present in a number of other base-excision DNA repair proteins that process diverse lesions. Thus, we propose the existence of a DNA glycosylase superfamily, members of which possess a common fold yet act upon remarkably diverse lesions, ranging from UV photoadducts to mismatches to alkylated or oxidized bases.
机译:背景:活性氧,电离辐射和其他自由基发生器可将DNA中的鸟嘌呤(G)残基转化为8-氧代鸟嘌呤((O)G),这是高度诱变的,因为它会优先与腺嘌呤(A)配对。复制。细菌可通过切除病变,纠正(O)G:A错配并清除d(O)GTP核苷酸前体库的多组分系统应对这种威胁。尽管生化证据表明真核生物中存在特定于(O)G的碱基切除DNA修复蛋白,但对这些蛋白知之甚少。结果:使用底物模拟亲和色谱,然后进行基于机理的共价捕获程序,我们从酿酒酵母中分离了碱基精确的DNA修复蛋白,该蛋白加工与胞嘧啶相反的(O)G((O)G:C),但仅起作用弱于(O)G:A。使用来自蛋白质的肽序列搜索酵母基因组数据库,鉴定出一个基因OGG1,该基因编码一个预测的43 kDa(376个氨基酸)蛋白质,与通过互补克隆独立鉴定的一个蛋白质相同。 Ogg1具有(O)G:C特异的碱基切除DNA修复活性以及内在的β-裂合酶活性,该活性通过席夫碱中间体进行。酵母中OGG1基因的定向破坏揭示了第二个(O)G糖基化酶/裂解酶蛋白,暂定名为OGG2,它与OGG1的不同之处在于它优先作用于(O)G:G。结论:酿酒酵母具有两种(O)G特异性糖基化酶/裂解酶,它们对病变对侧碱基的偏好存在显着差异。我们建议其中之一,Ogg1,在整体三维结构上与大肠杆菌核酸内切酶III(内切III)密切相关,这是一种糖基化酶/裂解酶,作用于片段化和氧化损伤的嘧啶。我们最近发现,AlkA是一种作用于烷基化碱基的单功能DNA糖基化酶,在结构上与Endo III同源。我们现在已经确定了这三种蛋白质之间共有的活性位点基序。使用此基序作为蛋白质数据库搜索工具,我们发现它存在于许多其他碱基精确的DNA修复蛋白中,这些蛋白质修复了各种病变。因此,我们提出了DNA糖基化酶超家族的存在,其成员具有共同的折叠但仍作用于明显不同的损伤,范围从UV光加合物到错配到烷基化或氧化的碱基。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号